

GraVE - Dead simple graph visualization

Contents:

	The GraVE API
	Basic Plotting

	Styling your plot

	Developer Guide
	Developer overview

	Working with grave source code

	Gallery

	Notes from GraphXD sprints
	From discussions with Nelle Varoquaux, Aric Hagberg, and Dan Schult

	From discussion with large group of network practitioners

	initial target cases

Indices and tables

	Index

	Module Index

	Search Page

The GraVE API

Basic Plotting

	plot_network(graph[, layout, node_style, …])

	Plot network

	style_merger(*funcs)

	

Styling your plot

	apply_style(style, item_iterable)

	

	generate_node_styles(network, node_style)

	

	generate_edge_styles(network, edge_style)

	

grave.grave.plot_network

	
grave.grave.plot_network(graph, layout='spring', node_style=None, edge_style=None, node_label_style=None, edge_label_style=None, *, ax)

	Plot network

	Parameters

	graph (networkx graph object) –

Examples using grave.grave.plot_network

[image: ../../_images/sphx_glr_plot_basics_thumb.png]
A dead simple network

[image: ../../_images/sphx_glr_color_dominators_thumb.png]
GraVE Documentation

[image: ../../_images/sphx_glr_plot_use_attributes_centrality_thumb.png]
GraVE Documentation

grave.grave.style_merger

grave.style.apply_style

	
grave.style.apply_style(style, item_iterable, default)

	

grave.style.generate_node_styles

	
grave.style.generate_node_styles(network, node_style)

	

grave.style.generate_edge_styles

	
grave.style.generate_edge_styles(network, edge_style)

	

Developer Guide

	Developer overview
	Divergence between upstream master and your feature branch

	Guidelines

	Stylistic Guidelines

	Pull request codes

	Bugs

	Working with grave source code
	Introduction

	Install git

	Following the latest source

	Making a patch

	Git for development

	git resources

Developer overview

	If you are a first-time contributor:

	Go to https://github.com/networkx/grave and click the
“fork” button to create your own copy of the project.

	Clone the project to your local computer:

git clone git@github.com:your-username/grave.git

	Add the upstream repository:

git remote add upstream git@github.com:networkx/grave.git

	Now, you have remote repositories named:

	upstream, which refers to the networkx/grave repository

	origin, which refers to your personal fork

	Develop your contribution:

	Pull the latest changes from upstream:

git checkout master
git pull upstream master

	Create a branch for the feature you want to work on. Since the
branch name will appear in the merge message, use a sensible name
such as ‘bugfix-for-issue-1480’:

git checkout -b bugfix-for-issue-1480

	Commit locally as you progress (git add and git commit)

	To submit your contribution:

	Push your changes back to your fork on GitHub:

git push origin bugfix-for-issue-1480

	Go to GitHub. The new branch will show up with a green Pull Request
button—click it.

	If you want, post on the mailing list [http://groups.google.com/group/networkx-discuss] to explain your changes or
to ask for review.

For a more detailed discussion, read these detailed documents on how to use Git with grave
(http://grave.readthedocs.io/en/latest/developer/gitwash/index.html).

	Review process:

	Reviewers (the other developers and interested community members) will
write inline and/or general comments on your Pull Request (PR) to help
you improve its implementation, documentation, and style. Every single
developer working on the project has their code reviewed, and we’ve come
to see it as friendly conversation from which we all learn and the
overall code quality benefits. Therefore, please don’t let the review
discourage you from contributing: its only aim is to improve the quality
of project, not to criticize (we are, after all, very grateful for the
time you’re donating!).

	To update your pull request, make your changes on your local repository
and commit. As soon as those changes are pushed up (to the same branch as
before) the pull request will update automatically.

	Travis-CI [https://travis-ci.org/], a continuous integration service,
is triggered after each Pull Request update to build the code and run unit
tests of your branch. The Travis tests must pass before your PR can be merged.
If Travis fails, you can find out why by clicking on the “failed” icon (red
cross) and inspecting the build and test log.

	AppVeyor [http://ci.appveyor.com], is another continuous integration
service, which we use. You will also need to make sure that the AppVeyor
tests pass.

Note

If closing a bug, also add “Fixes #1480” where 1480 is the issue number.

Divergence between upstream master and your feature branch

Never merge the main branch into yours. If GitHub indicates that the
branch of your Pull Request can no longer be merged automatically, rebase
onto master:

git checkout master
git pull upstream master
git checkout bugfix-for-issue-1480
git rebase master

If any conflicts occur, fix the according files and continue:

git add conflict-file1 conflict-file2
git rebase --continue

However, you should only rebase your own branches and must generally not
rebase any branch which you collaborate on with someone else.

Finally, you must push your rebased branch:

git push --force origin bugfix-for-issue-1480

(If you are curious, here’s a further discussion on the
dangers of rebasing [http://tinyurl.com/lll385].
Also see this LWN article [http://tinyurl.com/nqcbkj].)

Guidelines

	All code should have tests.

	All code should be documented, to the same
standard [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard]
as NumPy and SciPy.

	For new functionality, always add an example to the gallery.

	All changes are reviewed. Ask on the
mailing list [http://groups.google.com/group/networkx-discuss] if
you get no response to your pull request.

Stylistic Guidelines

	Set up your editor to remove trailing whitespace.
Follow PEP08.
Check code with pyflakes / flake8.

	Use the following import conventions:

import numpy as np
import scipy as sp
import matplotlib as mpl
import matplotlib.pyplot as plt
import networkx as nx
import grave as gve

cimport numpy as cnp # in Cython code

Pull request codes

When you submit a pull request to GitHub, GitHub will ask you for a summary. If
your code is not ready to merge, but you want to get feedback, please consider
using WIP: experimental optimization or similar for the title of your pull
request. That way we will all know that it’s not yet ready to merge and that
you may be interested in more fundamental comments about design.

When you think the pull request is ready to merge, change the title (using the
Edit button) to remove the WIP:.

Bugs

Please report bugs on GitHub [https://github.com/networkx/grave/issues].

Working with grave source code

Contents:

	Introduction

	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Making a patch
	Making patches

	Moving from patching to development

	Git for development
	Making your own copy (fork) of grave

	Set up your fork

	Configure git

	Development workflow

	Maintainer workflow

	git resources
	Tutorials and summaries

	Advanced git workflow

	Manual pages online

Introduction

These pages describe a git [https://git-scm.com/] and github [https://github.com] workflow for the grave [http://grave.readthedocs.io/en/latest/]
project.

There are several different workflows here, for different ways of
working with grave.

This is not a comprehensive git reference, it’s just a workflow for our
own project. It’s tailored to the github hosting service. You may well
find better or quicker ways of getting stuff done with git, but these
should get you started.

For general resources for learning git, see git resources.

Install git

Overview

	Debian / Ubuntu

	sudo apt-get install git

	Fedora

	sudo dnf install git

	Windows

	Download and install msysGit [https://git-scm.com/download/win]

	OS X

	Use the git-osx-installer [https://git-scm.com/download/mac]

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help [https://help.github.com]

There are good instructions here: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Following the latest source

These are the instructions if you just want to follow the latest
grave source, but you don’t need to do any development for now.

The steps are:

	Install git

	get local copy of the grave github [https://github.com/grave/grave] git repository

	update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/grave/grave.git

You now have a copy of the code tree in the new grave directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd grave
git pull

The tree in grave will now have the latest changes from the initial
repository.

Making a patch

You’ve discovered a bug or something else you want to change
in grave [http://grave.readthedocs.io/en/latest/] .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here
we explain how. Making a patch is the simplest and quickest,
but if you’re going to be doing anything more than simple
quick things, please consider following the
Git for development model instead.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/grave/grave.git
make a branch for your patching
cd grave
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the grave
mailing list [http://groups.google.com/group/networkx-discuss/] — where we will thank you warmly.

In detail

	Tell git who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

	If you don’t already have one, clone a copy of the
grave [http://grave.readthedocs.io/en/latest/] repository:

git clone git://github.com/grave/grave.git
cd grave

	Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

	Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line. The a flag — you can just take on faith —
or see why the -a flag? [http://gitready.com/beginner/2009/01/18/the-staging-area.html].

	When you have finished, check you have committed all your
changes:

git status

	Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the grave mailing list [http://groups.google.com/group/networkx-discuss/].

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or
more feature branches, you will probably want to switch to
development mode. You can do this with the repository you
have.

Fork the grave [http://grave.readthedocs.io/en/latest/] repository on github — Making your own copy (fork) of grave.
Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/grave.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the
Development workflow.

Git for development

Contents:

	Making your own copy (fork) of grave
	Set up and configure a github account

	Create your own forked copy of grave

	Set up your fork
	Overview

	In detail

	Configure git
	Overview

	In detail

	Development workflow
	Workflow summary

	Consider deleting your master branch

	Update the mirror of trunk

	Make a new feature branch

	The editing workflow

	Ask for your changes to be reviewed or merged

	Some other things you might want to do

	Maintainer workflow
	Integrating changes

Making your own copy (fork) of grave

You need to do this only once. The instructions here are very similar
to the instructions at https://help.github.com/forking/ — please see
that page for more detail. We’re repeating some of it here just to give the
specifics for the grave [http://grave.readthedocs.io/en/latest/] project, and to suggest some default names.

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see
the Generating SSH keys help on github help [https://help.github.com].

Create your own forked copy of grave [http://grave.readthedocs.io/en/latest/]

	Log into your github account.

	Go to the grave [http://grave.readthedocs.io/en/latest/] github home at grave github [https://github.com/grave/grave].

	Click on the fork button:

[image: ../../_images/forking_button.png]
Now, after a short pause, you should find yourself at the home page for
your own forked copy of grave [http://grave.readthedocs.io/en/latest/].

Set up your fork

First you follow the instructions for Making your own copy (fork) of grave.

Overview

git clone git@github.com:your-user-name/grave.git
cd grave
git remote add upstream git://github.com/grave/grave.git

In detail

Clone your fork

	Clone your fork to the local computer with git clone
git@github.com:your-user-name/grave.git

	Investigate. Change directory to your new repo: cd grave. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream grave github [https://github.com/grave/grave] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd grave
git remote add upstream git://github.com/grave/grave.git

upstream here is just the arbitrary name we’re using to refer to the
main grave [http://grave.readthedocs.io/en/latest/] repository at grave github [https://github.com/grave/grave].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/grave/grave.git (fetch)
upstream git://github.com/grave/grave.git (push)
origin git@github.com:your-user-name/grave.git (fetch)
origin git@github.com:your-user-name/grave.git (push)

Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in
your home directory.

Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status
 stat = status
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [https://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

Fancy log output

This is a very nice alias to get a fancy log output; it should go in the
alias section of your .gitconfig file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45 minutes ago) [Matthew Brett]
* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/master (2 weeks ago) [Jonathan Terhorst]
|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/
* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2 weeks ago) [Corran Webster]
* 68f6752 - Initial implimentation of AxisIndexer - uses 'index_by' which needs to be changed to a call on an Axes object - this is all very sketchy right now. (2 weeks ago) [Corr
* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan Terhorst]
|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality with non-axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago) [Jonathan Terhorst]
| |\
| |/

Thanks to Yury V. Zaytsev for posting it.

Development workflow

You already have your own forked copy of the grave [http://grave.readthedocs.io/en/latest/] repository, by
following Making your own copy (fork) of grave. You have Set up your fork. You have configured
git by following Configure git. Now you are ready for some real work.

Workflow summary

In what follows we’ll refer to the upstream grave master branch, as
“trunk”.

	Don’t use your master branch for anything. Consider deleting it.

	When you are starting a new set of changes, fetch any changes from trunk,
and start a new feature branch from that.

	Make a new branch for each separable set of changes — “one task, one
branch” (ipython git workflow [https://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html]).

	Name your branch for the purpose of the changes - e.g.
bugfix-for-issue-14 or refactor-database-code.

	If you can possibly avoid it, avoid merging trunk or any other branches into
your feature branch while you are working.

	If you do find yourself merging from trunk, consider Rebasing on trunk

	Ask on the grave mailing list [http://groups.google.com/group/networkx-discuss/] if you get stuck.

	Ask for code review!

This way of working helps to keep work well organized, with readable history.
This in turn makes it easier for project maintainers (that might be you) to see
what you’ve done, and why you did it.

See linux git workflow [https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] and ipython git workflow [https://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html] for some explanation.

Consider deleting your master branch

It may sound strange, but deleting your own master branch can help reduce
confusion about which branch you are on. See deleting master on github [https://matthew-brett.github.io/pydagogue/gh_delete_master.html] for
details.

Update the mirror of trunk

First make sure you have done Linking your repository to the upstream repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to
point to the right commit. For example, ‘trunk’ is the branch referred to by
(remote/branchname) upstream/master - and if there have been commits since
you last checked, upstream/master will change after you do the fetch.

Make a new feature branch

When you are ready to make some changes to the code, you should start a new
branch. Branches that are for a collection of related edits are often called
‘feature branches’.

Making an new branch for each set of related changes will make it easier for
someone reviewing your branch to see what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us
what the changes in the branch are for. For example add-ability-to-fly, or
buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github [https://github.com]
fork of grave [http://grave.readthedocs.io/en/latest/]. To do this, you git push [https://schacon.github.io/git/git-push.html] this new branch up to your
github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push
up to your own repo on github with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the
my-new-feature branch in the github repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

	Make some changes

	See which files have changed with git status (see git status [https://schacon.github.io/git/git-status.html]).
You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

	Check what the actual changes are with git diff (git diff [https://schacon.github.io/git/git-diff.html]).

	Add any new files to version control git add new_file_name (see
git add [https://schacon.github.io/git/git-add.html]).

	To commit all modified files into the local copy of your repo,, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on
faith — or see why the -a flag? [http://gitready.com/beginner/2009/01/18/the-staging-area.html] — and the helpful use-case
description in the tangled working copy problem [https://2ndscale.com/rtomayko/2008/the-thing-about-git]. The git commit [https://schacon.github.io/git/git-commit.html] manual
page might also be useful.

	To push the changes up to your forked repo on github, do a git
push (see git push [https://schacon.github.io/git/git-push.html]).

Ask for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

	Go to the URL of your forked repo, say
https://github.com/your-user-name/grave.

	Use the ‘Switch Branches’ dropdown menu near the top left of the page to
select the branch with your changes:

[image: ../../_images/branch_dropdown.png]

	Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a title for the set of changes, and some explanation of what you’ve
done. Say if there is anything you’d like particular attention for - like a
complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your
pull request message. This is still a good way of getting some preliminary
code review.

Some other things you might want to do

Delete a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

Note the colon : before my-unwanted-branch. See also:
https://help.github.com/articles/pushing-to-a-remote/#deleting-a-remote-branch-or-tag

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github.

First fork grave into your account, as from Making your own copy (fork) of grave.

Then, go to your forked repository github page, say
https://github.com/your-user-name/grave

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/grave.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [https://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github
repo.

Finally the Fancy log output lg alias will give you a reasonable text-based
graph of the repository.

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You
Update the mirror of trunk and Make a new feature branch called
cool-feature. At this stage trunk is at some commit, let’s call it E. Now
you make some new commits on your cool-feature branch, let’s call them A, B,
C. Maybe your changes take a while, or you come back to them after a while. In
the meantime, trunk has progressed from commit E to commit (say) G:

 A---B---C cool-feature
 /
D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you
remember that this here page sternly advises you not to do that, because the
history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk
might affect your changes, and you need to harmonize them. In this situation
you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to
the current state of trunk. In other words, in this case, it takes the
changes represented by A, B, C and replays them on top of G. After the rebase,
your history will look like this:

 A'--B'--C' cool-feature
 /
D---E---F---G trunk

See rebase without tears [https://matthew-brett.github.io/pydagogue/rebase_without_tears.html] for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream
go to the feature branch
git checkout cool-feature
make a backup in case you mess up
git branch tmp cool-feature
rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last
command can be written more succinctly as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn’t look good you may need to have a look at
Recovering from mess-ups.

If you have made changes to files that have also changed in trunk, this may
generate merge conflicts that you need to resolve - see the git rebase [https://schacon.github.io/git/git-rebase.html] man
page for some instructions at the end of the “Description” section. There is
some related help on merging in the git user manual - see resolving a merge [https://schacon.github.io/git/user-manual.html#resolving-a-merge].

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is
relatively straightforward to recover from such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note

Do this only for your own feature branches.

There’s an embarrassing typo in a commit you made? Or perhaps the you
made several false starts you would like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we
want to make the following changes:

	Rewrite the commit message for 13d7934 to something more sensible.

	Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for
13d7934, and (ii) collapse the last three commits into one. Now we
save and quit the editor.

Git will then immediately bring up an editor for editing the commit
message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
 2 files changed, 199 insertions(+), 66 deletions(-)
[detached HEAD 0f22701] Fix a few bugs + disable
 1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

Maintainer workflow

This page is for maintainers — those of us who merge our own or other
peoples’ changes into the upstream repository.

Being as how you’re a maintainer, you are completely on top of the basic stuff
in Development workflow.

The instructions in Linking your repository to the upstream repo add a remote that has read-only
access to the upstream repo. Being a maintainer, you’ve got read-write access.

It’s good to have your upstream remote have a scary name, to remind you that
it’s a read-write remote:

git remote add upstream-rw git@github.com:grave/grave.git
git fetch upstream-rw

Integrating changes

Let’s say you have some changes that need to go into trunk
(upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are
looking at someone’s changes like this:

git remote add someone git://github.com/someone/grave.git
git fetch someone
git branch cool-feature --track someone/cool-feature
git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The
rest of this section assumes you are on this branch.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
git fetch upstream-rw
rebase
git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you’ll have to close any
github pull requests manually, because github will not be able to detect the
changes have already been merged.

A long series of commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge --no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests
automatically.

Note the --no-ff above. This forces git to make a merge commit, rather than
doing a fast-forward, so that these set of commits branch off trunk then rejoin
the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have
the right commits:

git log --oneline --graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text
representation of the history graph. The second line shows the log of commits
excluding those that can be reached from trunk (upstream-rw/master), and
including those that can be reached from current HEAD (implied with the ..
at the end). So, it shows the commits unique to this branch compared to trunk.
The -p option shows the diff for these commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my-new-feature branch in this repository to the master
branch in the upstream-rw repository.

git resources

Tutorials and summaries

	github help [https://help.github.com] has an excellent series of how-to guides.

	The pro git book [https://git-scm.com/book/en/v2] is a good in-depth book on git.

	A git cheat sheet [https://help.github.com/git-cheat-sheets/] is a page giving summaries of common commands.

	The git user manual [https://schacon.github.io/git/user-manual.html]

	The git tutorial [https://schacon.github.io/git/gittutorial.html]

	git ready [http://gitready.com/] — a nice series of tutorials

	git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] — extended introduction with intermediate detail

	The git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] is an easy read explaining the concepts behind git.

	git foundation [https://matthew-brett.github.io/pydagogue/foundation.html] expands on the git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html].

	Fernando Perez’ git page — Fernando’s git page [http://www.fperez.org/py4science/git.html] — many
links and tips

	A good but technical page on git concepts [https://www.sbf5.com/~cduan/technical/git/]

	git svn crash course [https://git-scm.com/course/svn.html]: git for those of us used to subversion [http://subversion.tigris.org/]

Advanced git workflow

There are many ways of working with git; here are some posts on the
rules of thumb that other projects have come up with:

	Linus Torvalds on git management [https://web.archive.org/web/20090224195437/http://kerneltrap.org/Linux/Git_Management]

	Linus Torvalds on linux git workflow [https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] . Summary; use the git tools
to make the history of your edits as clean as possible; merge from
upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

	git add [https://schacon.github.io/git/git-add.html]

	git branch [https://schacon.github.io/git/git-branch.html]

	git checkout [https://schacon.github.io/git/git-checkout.html]

	git clone [https://schacon.github.io/git/git-clone.html]

	git commit [https://schacon.github.io/git/git-commit.html]

	git config [https://schacon.github.io/git/git-config.html]

	git diff [https://schacon.github.io/git/git-diff.html]

	git log [https://schacon.github.io/git/git-log.html]

	git pull [https://schacon.github.io/git/git-pull.html]

	git push [https://schacon.github.io/git/git-push.html]

	git remote [https://schacon.github.io/git/git-remote.html]

	git status [https://schacon.github.io/git/git-status.html]

Gallery

[image: ../_images/sphx_glr_plot_basics_thumb.png]
A dead simple network

[image: ../_images/sphx_glr_style_attr_thumb.png]
GraVE Documentation

[image: ../_images/sphx_glr_plot_jarrod_graphxd_thumb.png]
GraVE Documentation

[image: ../_images/sphx_glr_plot_dominators_thumb.png]
GraVE Documentation

[image: ../_images/sphx_glr_plot_defaults_thumb.png]
Using another style

[image: ../_images/sphx_glr_sprint_notes_thumb.png]
GraVE Documentation

[image: ../_images/sphx_glr_plot_layout_custom_thumb.png]
Using a custom layout

[image: ../_images/sphx_glr_sprint_notes2_thumb.png]
GraVE Documentation

[image: ../_images/sphx_glr_plot_layout_thumb.png]
Different layouts

[image: ../_images/sphx_glr_plot_degrees_thumb.png]
Coloring the degrees of a node

[image: ../_images/sphx_glr_plot_use_attributes_centrality_thumb.png]
GraVE Documentation

[image: ../_images/sphx_glr_plot_grid_thumb.png]
Labeled 2D Grid

[image: ../_images/sphx_glr_node_picking_thumb.png]
Interactively highlight nodes and edges

[image: ../_images/sphx_glr_plot_cities_thumb.png]
Cities

Download all examples in Python source code: gallery_python.zip

Download all examples in Jupyter notebooks: gallery_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

A dead simple network

The simplest way to plot a graphe ever. And yet it looks cool!

[image: ../_images/sphx_glr_plot_basics_001.png]
import networkx as nx
import matplotlib.pyplot as plt
from grave import plot_network

Generating a networkx graph
graph = nx.barbell_graph(10, 14)

fig, ax = plt.subplots()
plot_network(graph, ax=ax)
plt.show()

Total running time of the script: (0 minutes 0.063 seconds)

Download Python source code: plot_basics.py

Download Jupyter notebook: plot_basics.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

import networkx as nx

toy_network = nx.barbell_graph(100, 10)

for node, node_attributes in toy_network.nodes(data=True):
 node['style'] = {'color': 'blue'}

plot_the_graph(toy_network,
 node_style=lambda attrs: attrs['style'])

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: style_attr.py

Download Jupyter notebook: style_attr.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

[image: ../_images/sphx_glr_plot_jarrod_graphxd_001.png]
import networkx as nx
import matplotlib.pyplot as plt

toy_network = nx.barbell_graph(10, 14)

node_options = {
 'node_color': 'royalblue',
 'node_size': 50,
 'edgecolors': 'white',
}

edge_options = {
 'line_color': 'grey',
 'alpha': 0.7,
}

pos = nx.circular_layout(toy_network)
nx.draw_networkx_nodes(toy_network, pos, **node_options)
nx.draw_networkx_edges(toy_network, pos, **edge_options)
plt.axes().set_aspect('equal')
plt.axis('off')

Total running time of the script: (0 minutes 0.027 seconds)

Download Python source code: plot_jarrod_graphxd.py

Download Jupyter notebook: plot_jarrod_graphxd.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

[image: ../_images/sphx_glr_plot_dominators_001.png]
import networkx as nx
from networkx.algorithms.approximation.dominating_set import min_weighted_dominating_set
import matplotlib.pyplot as plt

from grave import plot_network, use_attributes

toy_network = nx.barbell_graph(10, 14)
dom_set = min_weighted_dominating_set(toy_network)

for node, node_attrs in toy_network.nodes(data=True):
 if node in dom_set:
 node_attrs['color'] = 'red'
 else:
 node_attrs['color'] = 'black'
 node_attrs['size'] = 50

fig, ax = plt.subplots()
plot_network(toy_network,
 node_style=use_attributes())
plt.show()

Total running time of the script: (0 minutes 0.182 seconds)

Download Python source code: plot_dominators.py

Download Jupyter notebook: plot_dominators.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Using another style

In this example, we show how to use another default Matplotlib style.

[image: ../_images/sphx_glr_plot_defaults_001.png]
import networkx as nx
import matplotlib.pyplot as plt
from grave import plot_network

network = nx.binomial_graph(50, .05)

fig, ax_mat = plt.subplots(ncols=2)

plot_network(network, ax=ax_mat[0])
ax_mat[0].set_axis_on()
with plt.style.context(('ggplot')):
 plot_network(network, ax=ax_mat[1])

ax_mat[1].set_axis_on()
for ax in ax_mat:
 ax.set_axis_on()
 ax.tick_params(which='both',
 bottom=False,
 top=False,
 left=False,
 right=False,
 labelbottom=False,
 labelleft=False)
plt.show()

Total running time of the script: (0 minutes 0.117 seconds)

Download Python source code: plot_defaults.py

Download Jupyter notebook: plot_defaults.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

import networkx as nx

toy_network = nx.barbell_graph(10, 14)

node_options = {
 'node_color': 'royalblue',
 'node_size': 50,
 'edgecolors': 'white',
}

edge_options = {
 'line_color': 'grey',
 'alpha': 0.7,
}

def protein_style(node_attributes):
 if node_attributes.get('type', '') == 'protein':
 return {'color': 'blue'}
 else:
 return {'color': 'red'}

plot_the_graph(toy_network,
 layout='spring',
 node_style=protein_style,
 edge_stlye=edge_options,
 node_labels=None,
 edge_labels=None,
 extra_artists=None)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: sprint_notes.py

Download Jupyter notebook: sprint_notes.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Using a custom layout

The default layouts available through GraVE may not be sufficient for ones
need. Hence, GraVE also support custom layouts.

[image: ../_images/sphx_glr_plot_layout_custom_001.png]
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from grave import grave

graph = nx.barbell_graph(10, 14)
nx.set_node_attributes(graph, dict(graph.degree()), 'degree')

def random_constrained_layout(networkx):
 """
 Let's build my own layout. It's going to be random, except for a handful
 of points!
 """
 n_nodes = len(graph.nodes.data())
 random_state = np.random.RandomState(seed=0)
 xy = random_state.randn(n_nodes, 2)
 xy[0] = [0, 0]
 xy[10] = [+3, 8]

 return {k: xy[k] for k in graph.nodes.keys()}

fig, ax = plt.subplots()
grave.plot_network(graph, ax=ax, layout=random_constrained_layout)

Total running time of the script: (0 minutes 0.032 seconds)

Download Python source code: plot_layout_custom.py

Download Jupyter notebook: plot_layout_custom.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

import networkx as nx

toy_network = nx.barbell_graph(10, 14)

node_options = {
 'node_color': 'royalblue',
 'node_size': 50,
 'edgecolors': 'white',
}

edge_options = {
 'line_color': 'grey',
 'alpha': 0.7,
}

for node, node_attributes in toy_network.nodes(data=True):
 node_attributes['distance'] = my_compute(toy_network, node)

def protein_style(node_attributes):
 if node_attributes.get('type', '') == 'protein':
 return {'color': 'blue'}
 else:
 return {'color': 'red'}

plot_the_graph(toy_network,
 layout='spring',
 node_style=protein_style,
 edge_stlye=edge_options)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: sprint_notes2.py

Download Jupyter notebook: sprint_notes2.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Different layouts

GraVE supports different layouts by default.

[image: ../_images/sphx_glr_plot_layout_001.png]
import networkx as nx
import matplotlib.pyplot as plt
from grave import grave

graph = nx.barbell_graph(10, 14)
nx.set_node_attributes(graph, dict(graph.degree()), 'degree')

fig, axes = plt.subplots(nrows=2, ncols=2)

grave.plot_network(graph, ax=axes[0, 0], layout="spring")
axes[0, 0].set_title("spring", fontweight="bold")

grave.plot_network(graph, ax=axes[1, 0], layout="circular")
axes[1, 0].set_title("circular", fontweight="bold")

grave.plot_network(graph, ax=axes[0, 1], layout="random")
axes[0, 1].set_title("random", fontweight="bold")

grave.plot_network(graph, ax=axes[1, 1], layout="spectral")
axes[1, 1].set_title("spectral", fontweight="bold")

plt.show()

Total running time of the script: (0 minutes 0.212 seconds)

Download Python source code: plot_layout.py

Download Jupyter notebook: plot_layout.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Coloring the degrees of a node

Test

[image: ../_images/sphx_glr_plot_degrees_001.png]
import networkx as nx
import matplotlib.pyplot as plt
import random
from grave import plot_network

graph = nx.barbell_graph(10, 14)

nx.set_node_attributes(graph, dict(graph.degree()), 'degree')

def degree_colorer(node_attributes):
 deg = node_attributes['degree']
 shape = random.choice(['s', 'o', '^', 'v', '8'])
 if deg > 5:
 return {'color': 'r', 'size': 20*deg, 'shape': shape}
 return {'color': 'b', 'size': 20*deg, 'shape': shape}

def pathological_edge_style(edge_attrs):
 return {'color': random.choice(['r', (0, 1, 0, .5), 'xkcd:ocean'])}

fig, ax = plt.subplots()
plot_network(graph, ax=ax, node_style=degree_colorer,
 edge_style=pathological_edge_style)
plt.show()

Total running time of the script: (0 minutes 0.050 seconds)

Download Python source code: plot_degrees.py

Download Jupyter notebook: plot_degrees.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

[image: ../_images/sphx_glr_plot_use_attributes_centrality_001.png]
import networkx as nx
from networkx.algorithms.centrality import closeness_centrality
import matplotlib.pyplot as plt

from grave import plot_network, use_attributes

toy_network = nx.barbell_graph(10, 14)
toy_centrality = closeness_centrality(toy_network)
max_centrality = max(toy_centrality.values())

for u, v, edge_attributes in toy_network.edges.data():
 c = (toy_centrality[u] +
 toy_centrality[v]) / 2
 color_idx = (c / max_centrality)
 cmap = plt.get_cmap()
 edge_attributes['color'] = cmap(color_idx)
 edge_attributes['width'] = 2

for node, node_attributes in toy_network.nodes.data():
 node_attributes['size'] = (1 - (toy_centrality[node] /
 max_centrality) + .1) * 100

def edge_style(edge_attributes):
 return {'linewidth': edge_attributes.get('weight', 1)}

fig, ax = plt.subplots()
plot_network(toy_network,
 layout='spring',
 node_style=use_attributes(),
 edge_style=use_attributes('color'))
plt.show()

Total running time of the script: (0 minutes 0.154 seconds)

Download Python source code: plot_use_attributes_centrality.py

Download Jupyter notebook: plot_use_attributes_centrality.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Labeled 2D Grid

This example shows both labels and custom layout.

[image: ../_images/sphx_glr_plot_grid_001.png]
import networkx as nx
import matplotlib.pyplot as plt
import random
from grave import plot_network, style_merger

def degree_colorer(node_attributes):
 deg = node_attributes['degree']
 shape = 'o' #random.choice(['s', 'o', '^', 'v', '8'])
 return {'color': 'b', 'size': 20*deg, 'shape': shape}

def font_styler(attributes):
 return {'font_size': 8,
 'font_weight': .5,
 'font_color': 'k'}

def tiny_font_styler(attributes):
 return {'font_size': 4,
 'font_weight': .5,
 'font_color': 'r'}

def pathological_edge_style(edge_attrs):
 return {'color': random.choice(['r', (0, 1, 0, .5), 'xkcd:ocean'])}

network = nx.grid_2d_graph(4, 6)

nx.set_node_attributes(network, dict(network.degree()), 'degree')

fig, ax = plt.subplots()
plot_network(network, ax=ax, layout=lambda G: {node: node for node in G},
 node_style=degree_colorer,
 edge_style=pathological_edge_style,
 node_label_style=font_styler,
 edge_label_style=tiny_font_styler)

plt.show()

Total running time of the script: (0 minutes 0.078 seconds)

Download Python source code: plot_grid.py

Download Jupyter notebook: plot_grid.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Interactively highlight nodes and edges

Run this with an interactive matplotlib backend!

Clicking on a node will hi-light it and it’s edges

import networkx as nx
import matplotlib.pyplot as plt
from grave import plot_network
from grave.style import use_attributes

def hilighter(event):
 # if we did not hit a node, bail
 if not hasattr(event, 'nodes') or not event.nodes:
 return

 # pull out the graph,
 graph = event.artist.graph

 # clear any non-default color on nodes
 for node, attributes in graph.nodes.data():
 attributes.pop('color', None)

 for u, v, attributes in graph.edges.data():
 attributes.pop('width', None)

 for node in event.nodes:
 graph.nodes[node]['color'] = 'C1'

 for edge_attribute in graph[node].values():
 edge_attribute['width'] = 3

 # update the screen
 event.artist.stale = True
 event.artist.figure.canvas.draw_idle()

graph = nx.barbell_graph(10, 14)

fig, ax = plt.subplots()
art = plot_network(graph, ax=ax, node_style=use_attributes(),
 edge_style=use_attributes())

art.set_picker(10)
ax.set_title('Click on the nodes!')
fig.canvas.mpl_connect('pick_event', hilighter)
plt.show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: node_picking.py

Download Jupyter notebook: node_picking.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Cities

miles_graph() returns an undirected graph over the 128 US cities from
the datafile miles_dat.txt. The cities each have location and population
data. The edges are labeled with the distance between the two cities.

This example is described in Section 1.1 in Knuth’s book (see 1 and 2).

References.

	1

	Donald E. Knuth,
“The Stanford GraphBase: A Platform for Combinatorial Computing”,
ACM Press, New York, 1993.

	2

	http://www-cs-faculty.stanford.edu/~knuth/sgb.html

[image: ../_images/sphx_glr_plot_cities_001.png]
Out:

Loaded miles_dat.txt containing 128 cities.
digraph has 128 nodes with 8128 edges
Subgraph has 6 nodes with 15 edges
['San Diego, CA', 'San Francisco, CA', 'Worcester, MA', 'Spokane, WA', 'Tucson, AZ', 'Saint Augustine, FL']

Based on example from NetworkX

import re
import sys

import matplotlib.pyplot as plt
import networkx as nx
import grave

def miles_graph():
 """ Return the cites example graph in miles_dat.txt
 from the Stanford GraphBase.
 """
 # open file miles_dat.txt.gz (or miles_dat.txt)
 import gzip
 fh = gzip.open('knuth_miles.txt.gz', 'r')

 G = nx.Graph()
 G.position = {}
 G.population = {}

 cities = []
 for line in fh.readlines():
 line = line.decode()
 if line.startswith("*"): # skip comments
 continue

 numfind = re.compile("^\d+")

 if numfind.match(line): # this line is distances
 dist = line.split()
 for d in dist:
 G.add_edge(city, cities[i], weight=int(d))
 i = i + 1
 else: # this line is a city, position, population
 i = 1
 (city, coordpop) = line.split("[")
 cities.insert(0, city)
 (coord, pop) = coordpop.split("]")
 (y, x) = coord.split(",")

 G.add_node(city)
 # assign position - flip x axis for matplotlib, shift origin
 G.position[city] = (-int(x) + 7500, int(y) - 3000)
 G.population[city] = float(pop) / 1000.0
 return G

if __name__ == '__main__':

 G = miles_graph()

 print("Loaded miles_dat.txt containing 128 cities.")
 print("digraph has %d nodes with %d edges"
 % (nx.number_of_nodes(G), nx.number_of_edges(G)))
 cities = ['San Diego, CA',
 'San Francisco, CA',
 'Saint Augustine, FL',
 'Spokane, WA',
 'Worcester, MA',
 'Tucson, AZ']

 # make subgraph of cities
 H = G.subgraph(cities)
 print("Subgraph has %d nodes with %d edges" % (len(H), H.size()))
 print(H.nodes)

 # draw with grave
 plt.figure(figsize=(8, 8))
 # create attribute for label
 nx.set_edge_attributes(H,
 {e: G.edges[e]['weight'] for e in H.edges},
 'label')

 # create stylers
 def transfer_G_layout(network):
 return {n: G.position[n] for n in network}

 def elabel_base_style(attr):
 return {'font_size': 4,
 'font_weight': .1,
 'font_family': 'sans-serif',
 'font_color': 'b',
 'rotate': True, # TODO: make rotation less granular
 }

 elabel_style = grave.style_merger(grave.use_attributes('label'),
 elabel_base_style)

 grave.plot_network(H, transfer_G_layout,
 node_style=dict(node_size=20),
 edge_label_style=elabel_style,
 node_label_style={})

 # scale the axes equally
 plt.xlim(-5000, 500)
 plt.ylim(-2000, 3500)

 plt.show()

Total running time of the script: (0 minutes 0.081 seconds)

Download Python source code: plot_cities.py

Download Jupyter notebook: plot_cities.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Notes from GraphXD sprints

Also see the example folder for concrete code

From discussions with Nelle Varoquaux, Aric Hagberg, and Dan Schult

	restrict to ‘small’ networks (few hundred to thousand)

	there are many choices in plotting mapping graph attributes -> visual properties

	(x, y) layout

	colors

	labels

	edges style

	interactivity (hover / pick)

	edge routing

	want to be able to update the plot in response to updating the network

	want to make it easily extensible

	performance?

From discussion with large group of network practitioners

	need “seaborn for networks”
- heursitics for edge style

	also want “seaborn for network statistics”

	look at igraph
- have lots of layout engines

	people tend to use different plots for data exploration vs publication

	functions for different on graph size

	input to layout engine should be flexible

	provide way to go to the bottom!

ball and edge

	per-vertex/edges labels

	per-vertex/edges annotation box (maybe?)

	per-vertex/edge artists / subplots
- excited about pie charts
- do this as roll-over / tool-tip

	mark sub-graphs

	per-node style

	per-edge style
- directed edges
- un-directed edges
- multi-edges
- arbitrary path

adjacency matrix view

	show adjacency matrix

	show anything at all in the gutters (all 8 places)

trees

	dendograms

sankey / flow

	this may be better interface to the existing sankey functionality in
Matplotlib

initial target cases

	re-make jarod’s slides
- small (25 nodes)

	a 1000 node random graph
- no labels, transparency, color per edge

	A tree of some sort

	splicing graph

	neural networks

	some flow network

Index

 A
 | G
 | P

A

 	
 	apply_style() (in module grave.style)

G

 	
 	generate_edge_styles() (in module grave.style)

 	
 	generate_node_styles() (in module grave.style)

P

 	
 	plot_network() (in module grave.grave)

GraVE Documentation

import networkx as nx
from networkx.algorithms.approximation.dominating_set import min_weighted_dominating_set
import matplotlib.pyplot as plt
from grave import grave

toy_network = nx.barbell_graph(10, 10)

dom_set = min_weighted_dominating_set(toy_network)

for node, node_attrs in toy_network.nodes(data=True):
 node_attrs['is_dominator'] = True if node in dom_set else False

def color_dominators(node_attributes):
 if node_attributes.get('is_dominator'):
 return {'color': 'red'}
 else:
 return {'color': 'gray'}

fig, ax = plt.subplots()
grave.plot_network(toy_network,
 node_style=color_dominators)
plt.show()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: color_dominators.py

Download Jupyter notebook: color_dominators.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

GraVE Documentation

import networkx as nx

toy_network = nx.barbell_graph(10, 14)

node_options = {
 'node_color': 'royalblue',
 'node_size': 50,
 'edgecolors': 'white',
}

edge_options = {
 'line_color': 'grey',
 'alpha': 0.7,
}

for u, v, edge_attributes in toy_network.edges.data():
 c = (toy_network.nodes[u]['value'] +
 toy_network.nodes[v]['value']) / 2
 edge_attributes['color'] = c

def edge_style(edge_attributes):
 return {'linewidth': edge_attributes.get('weight', 1)}

def use_attribute(k, dflt=None):
 def inner(node_attributes):
 return {k: node_attributes.get(k, dflt)}

 return inner

TODO add spec
WHITELIST = {'color', 'linewidth'}

def get_all_the_styles(attributes):
 return {k: v for k, v in attributes.items()
 if k in WHITELIST}

plot_the_network_as_ball_and_stick(ax, toy_network,
 layout='spring',
 node_style=get_all_the_styles,
 edge_stlye=use_attribute('color'),
 node_labels=None,
 edge_labels=None,
 extra_artists=None)

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: edge_style.py

Download Jupyter notebook: edge_style.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

 _static/broken_example.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/branch_dropdown.png
Source Commits Network Pull Requests (0)

Switch Branches (2) v| SwichTags (0) Branch List

my-fancy-feature
amed axes for data management
placehoider ¢

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

_static/no_image.png

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

_static/plus.png

nav.xhtml

 Table of Contents

 		
 GraVE - Dead simple graph visualization

 		
 The GraVE API

 		
 Basic Plotting

 		
 grave.grave.plot_network

 		
 grave.grave.style_merger

 		
 Styling your plot

 		
 grave.style.apply_style

 		
 grave.style.generate_node_styles

 		
 grave.style.generate_edge_styles

 		
 Developer Guide

 		
 Developer overview

 		
 Divergence between upstream master and your feature branch

 		
 Guidelines

 		
 Stylistic Guidelines

 		
 Pull request codes

 		
 Bugs

 		
 Working with grave source code

 		
 Introduction

 		
 Install git

 		
 Following the latest source

 		
 Making a patch

 		
 Git for development

 		
 git resources

 		
 Gallery

 		
 Notes from GraphXD sprints

 		
 From discussions with Nelle Varoquaux, Aric Hagberg, and Dan Schult

 		
 From discussion with large group of network practitioners

 		
 ball and edge

 		
 adjacency matrix view

 		
 trees

 		
 sankey / flow

 		
 initial target cases

_static/minus.png

_images/sphx_glr_plot_basics_001.png

_static/up.png

_images/sphx_glr_plot_basics_thumb.png

_images/sphx_glr_color_dominators_thumb.png

_images/sphx_glr_node_picking_thumb.png

_static/up-pressed.png

_images/sphx_glr_plot_defaults_001.png

_images/sphx_glr_plot_defaults_thumb.png
e T
%\m

7

TR

i

_images/sphx_glr_plot_cities_001.png
==
N> \k/

_images/sphx_glr_plot_cities_thumb.png

_images/sphx_glr_plot_degrees_001.png

_static/file.png

_images/sphx_glr_plot_degrees_thumb.png

_images/sphx_glr_plot_dominators_001.png

_images/sphx_glr_plot_grid_thumb.png

_images/sphx_glr_plot_jarrod_graphxd_001.png

_images/sphx_glr_plot_dominators_thumb.png

_images/sphx_glr_plot_grid_001.png

_images/sphx_glr_plot_layout_custom_001.png

_images/sphx_glr_plot_layout_custom_thumb.png

_images/sphx_glr_plot_jarrod_graphxd_thumb.png

_images/sphx_glr_plot_layout_001.png
spectral

circular

_images/sphx_glr_plot_use_attributes_centrality_001.png

_images/sphx_glr_plot_use_attributes_centrality_thumb.png

_images/sphx_glr_plot_layout_thumb.png
spring

_images/sphx_glr_style_attr_thumb.png

_images/sphx_glr_sprint_notes2_thumb.png

_images/sphx_glr_sprint_notes_thumb.png

